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1 Introduction

Kifer (2000) introduced a new class of derivative securities (Israeli options) which are not

only based on the evolution of the underlying asset price but depend on the strategic in-

teraction between the issuer and the holder of the contract as well. The main difference

of these derivative securities with the standard American contingent claims is that these

contracts can be exercised early by both the issuer as well as the holder. If the issuer de-

cides to exercise the contract early, then the holder receives a higher payoff (i.e. the issuer

has to pay a penalty). If the opposite happens, then the holder receives a lower exercise

payoff which can be interpreted as a cost reduction for the issuer. Kifer (2000) demon-

strated that the valuation of these contracts can be interpreted in terms of the saddle point

equilibrium of an associated Dynkin game (cf. Dynkin (1969)). More recently, Kyprianou

(2004) analyzed two examples of perpetual Israeli options (δ-penalty put option and the

δ-penalty Russian option) and derived their values explicitly. These studies naturally raise

several interesting questions on the extent to which the valuation of these contracts can be

generalized. Moreover, the comparative static properties of the optimal strategies and their

impact on the value of the contracts is naturally also of interest. Our purpose is to address

these questions in this study within a relatively general setting.

There are several mathematical techniques for analyzing optimal stopping games based

on continuous diffusion models for the underlying stochastic dynamics. Friedman (1973a)

considered a broad class of zero-sum stopping games and analyzed their values by relying

on variational inequalities (see also Friedman (1973b)). Bensoussan and Friedman (1974,

1977) investigated stopping games and their values in a very general setting both in the

nonzero-sum as well as in the zero-sum case by relying on the connection between the value

of the game and quasi-variational inequalities. Karatzas and Wang (2001), Fukushima

and Taksar (2002), as well as Boetius (2005) analyzed Dynkin games by relying on the

connection between singular stochastic control and optimal stopping. In that setting the

value characterizing the saddle point equilibrium can be identified as the derivative of the

value function of the singular control problem with respect to the current state. Ekström

(2006) as well as Ekström and Villeneuve (2006), in turn, analyzed Dynkin games by relying
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on the relationship between functional concavity and r-excessivity along the lines of the

pioneering work by Dynkin (1965) (Chapters XV and XVI) and the subsequent research by

Dayanik and Karatzas (2003) on the optimal stopping applications of functional concavity.

In this paper our objective is to analyze a relatively broad class of perpetual Dynkin

stopping games where the underlying stochastic dynamics is modeled as a one-dimensional

but otherwise general diffusion process. Instead of tackling the problem via variational in-

equalities or functional concavity, we take an alternative route and analyze the value of the

stopping game by relying on the classical theory of diffusions and deriving first the value of

an arbitrary stopping policy which can be characterized as a first exit time from an open

but otherwise general subinterval of the state space of the underlying diffusion. Naturally,

the resulting functional obtained by relying on this approach is not only a function of the

minimal r-excessive functions for the underlying diffusion, it is a function of the two ar-

bitrary boundaries as well. In light of this observation, we investigate if these potentially

suboptimal boundaries characterizing a pair of stopping times which constitute a candidate

pair for the saddle point strategy can be chosen so as to make the representation extremal.

By relying on ordinary nonlinear programming techniques, we state a set of ordinary first

order necessary conditions characterizing an interior pair of boundaries yielding an extremal

representation. We establish a general set of conditions under which these first order con-

ditions admit a unique solution and prove that whenever a pair satisfying the optimality

conditions exist, it characterizes the value of the game and, therefore, the saddle point

equilibrium strategy as well. Our results demonstrate that strategic interaction accelerates

rational exercise in comparison with the non-strategic case by resulting into a continuation

region which is typically strictly included into the interception of the continuation regions of

the stopping problems associated with the non-strategic setting. Consequently, our results

unambiguously indicate that along the saddle point equilibrium both players follow a rule

which would be considered suboptimal in the absence of strategic interaction. We also con-

sider the impact of optional components on the optimal policy and find that under certain

conditions there are circumstances under which increased volatility (or other similar para-

metric changes resulting in an expanded continuation set) may break up the existence of a
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saddle point equilibrium and result only into a suboptimal corner solution. Thus, within

our modeling framework increased market instability does not only alter the equilibrium

strategy, it may very well abolish it altogether. This observation once again emphasizes the

detrimental impact of increased volatility on the optimal timing of exercise in the strategic

setting as well.

The contents of this study are as follows. In section two we characterize the underlying

diffusion and present the considered class of Dynkin games. In section three we present a

set of auxiliary results needed later in the analysis of the general problem. In section four

we investigate the saddle point strategy and state our main results on the existence of an

optimal pair of stopping boundaries and the resulting value of the game. In section five we

then illustrate our general results in two cases. Finally, section six concludes our study.

2 The Considered Dynkin Game

We assume that the underlying state variable evolves according to a linear, time homo-

geneous, and regular diffusion process defined on the complete filtered probability space

(Ω,P, {Ft}t≥0,F) and evolving on the state-space I = (a, b) ⊆ R according to the dynamics

described by the Itô-stochastic differential equation

dXt = µ(Xt)dt + σ(Xt)dWt, X0 = x, (1)

where both the drift coefficient µ : R+ 7→ R and the diffusion coefficient σ : R+ 7→ R+ are

assumed to be sufficiently smooth for guaranteeing the existence and uniqueness of a (weak)

solution for the stochastic differential equation (1) (at least continuous, cf. Borodin and

Salminen (1996), pp. 46–47), and Wt denotes standard Brownian motion. In order to avoid

interior singularities, we also assume that the diffusion coefficient σ(x) is positive, that is,

we assume that σ(x) > 0 for all x ∈ I. Given the regularity of the underlying diffusion

process, we assume that the boundaries of the state-space are either natural, entrance, exit,

or regular for the process Xt. In case they are regular, we assume that they are killing. As

usually,

A =
1
2
σ2(x)

d2

dx2
+ µ(x)

d

dx
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denotes the differential operator associated to the underlying diffusion Xt. Since we are

going to introduce discounting into the analysis of the problem, we define the differential

operator Gr as Gr = A− r, where r > 0 denotes the constant discount rate.

Given the diffusion Xt, denote now as L1 the class of measurable mappings satisfying

the absolute integrability condition (i.e the absence of speculative bubbles condition)

Ex

∫ ζ

0
e−rt|f(Xt)|dt < ∞,

where ζ = inf{t ≥ 0 : Xt 6∈ I} denotes the potentially infinite life-time of the underlying

diffusion. For any f ∈ L1 we define the functional Rrf : R+ 7→ R as

(Rrf)(x) = Ex

∫ ζ

0
e−rtf(Xt)dt.

Moreover, it is well-known that given the assumptions of our study, there are two linearly

independent fundamental solutions ψ(x) and ϕ(x) satisfying a set of appropriate boundary

conditions based on the boundary behavior of the process X and spanning the set of solu-

tions of the ordinary differential equation (Gru)(x) = 0 (cf. Borodin and Salminen 2002,

pp. 18 - 19). Moreover, ψ′(x)ϕ(x)−ϕ′(x)ψ(x) = BS′(x), where B > 0 denotes the constant

Wronskian of the fundamental solutions ψ(x) and ϕ(x) and

S′(x) = exp
(
−

∫
2µ(x)dx

σ2(x)

)

denotes the density of the scale function of X. Given these fundamental solutions, the

expected cumulative present value (Rrf)(x) of a cash flow f ∈ L1 can be re-expressed as

(for a comprehensive characterization of the fundamental solutions and the representation

of expected cumulative present values in terms of these fundamental solutions, see Borodin

and Salminen (2002), pp. 17–20 and p. 29)

(Rrf)(x) = B−1ϕ(x)
∫ x

a
ψ(y)f(y)m′(y)dy + B−1ψ(x)

∫ b

x
ϕ(y)f(y)m′(y)dy, (2)

where m′(y) = 2/(σ2(x)S′(x)) denotes the density of the speed measure of the underlying

state process Xt.

Having characterized the underling diffusion process it is our purpose in this paper to

study a infinite horizon Dynkin game characterized by the mapping (we follow the notation

4



of the paper by Ekström and Villeneuve (2006))

Πx(τ, γ) = Ex

[
e−r(τ∧γ)

(
g1(Xτ )1{τ≤γ} + g2(Xγ)1{τ>γ}

)]
, (3)

where gi : I 7→ R, i = 1, 2, are continuous, non-decreasing mappings satisfying the condition

g2(x) ≥ g1(x) for all x ∈ I. We also assume that g1(x) is bounded from below and that

both mappings are continuously differentiable on I and twice continuously differentiable

outside a countable set of points {yi}i∈I so that |g′′j (yi±)| < ∞ for i = 1, 2 and j ∈ I. The

associated lower and upper values are defined as

V (x) = sup
τ

inf
γ

Πx(τ, γ) (4)

and

V (x) = inf
γ

sup
τ

Πx(τ, γ). (5)

As was argued in Ekström and Villeneuve (2006) we naturally have

g1(x) ≤ V (x) ≤ V (x) ≤ g2(x).

However, if we also have V (x) ≥ V (x), then the stochastic game has a value and this value is

denoted as V (x) = V (x) = V (x). A pair of stopping times (τ ′, γ′) constitutes a saddle point

of the considered Dynkin game whenever the condition Πx(τ, γ′) ≤ Πx(τ ′, γ′) ≤ Πx(τ ′, γ) is

satisfied for all stopping times τ, γ. In light of this inequality, it is clear that the existence

of a saddle point guarantees the existence of the value for the considered game. Finally, if

the considered Dynkin game has the value V (x), then the pair of stopping times

τ∗ = inf{t ≥ 0 : V (Xt) ≤ g1(Xt)} (6)

and

γ∗ = inf{t ≥ 0 : V (Xt) ≥ g2(Xt)} (7)

constitute a saddle point for the game.
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3 Auxiliary Results

Before presenting our first auxiliary results, we define the linear operators Lψ and Lϕ as

(cf. Salminen (1985) and Alvarez (2004))

(Lϕf)(x) =
f ′(x)
S′(x)

ϕ(x)− ϕ′(x)
S′(x)

f(x) (8)

and

(Lψf)(x) =
f ′(x)
S′(x)

ψ(x)− ψ′(x)
S′(x)

f(x). (9)

Naturally, if the mapping f(x) is twice continuously differentiable on I, then (Lψf)′(x) =

(Grf)(x)ψ(x)m′(x) and (Lϕf)′(x) = (Grf)(x)ϕ(x)m′(x). Hence, we observe that the func-

tionals (Lψf)(x) and (Lϕf)(x) remain constants on the sets where the mapping f(x) is

r-harmonic. Similarly, we also observe that the functionals (Lψf)(x) and (Lϕf)(x) de-

crease (increase) on the sets where the mapping f(x) is r-superharmonic (r-subharmonic).

Given these definitions, we now present a set of results characterizing the optimal stopping

strategy in the absence of strategic interaction (cf. Alvarez (2001, 2004)).

Lemma 3.1. (A) Assume that a is a natural boundary for Xt, that b is a nonattracting

boundary for Xt, and that there is a threshold x̃i, such that (Grgi)(x) T 0 for x S x̃i,

i = 1, 2. Then

Ui(x) = inf
γ

Ex

[
e−rγgi(Xγ)

]
= ϕ(x) inf

y≤x

[
gi(y)
ϕ(y)

]
=





gi(x̂i)
ϕ(x)
ϕ(x̂i)

x ∈ (x̂i, b)

gi(x) x ∈ (a, x̂i]
(10)

where the exercise threshold x̂i = argmin{gi(x)/ϕ(x)} ∈ (a, x̃i) is the unique root of the

ordinary first order condition g′i(x̂i)ϕ(x̂i) = gi(x̂i)ϕ′(x̂i). Moreover, γx̂i = inf{t ≥ 0 : Xt ≤
x̂i} is an almost surely finite optimal stopping time.

(B) Assume that b is a natural boundary for Xt, that a is a nonattracting boundary for Xt,

and that there is a threshold x̃i, such that (Grgi)(x) T 0 for x S x̃i. Then

Ji(x) = sup
τ

Ex

[
e−rτgi(Xτ )

]
= ψ(x) sup

y≥x

[
gi(y)
ψ(y)

]
=





gi(x) x ∈ [x∗i , b)

gi(x∗i )
ψ(x)
ψ(x∗i ) x ∈ (a, x∗i )

(11)
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where the exercise threshold x∗i = argmax{gi(x)/ψ(x)} ∈ (x̃i, b) is the unique root of the

ordinary first order condition g′i(x
∗
i )ψ(x∗i ) = gi(x∗i )ψ

′(x∗i ). Moreover, τx∗i = inf{t ≥ 0 : Xt ≥
x∗i } is an almost surely finite optimal stopping time.

Proof. (A) Consider first the functional (Lϕgi)(x), where the operator Lϕ is defined as in

(8). The monotonicity of the decreasing fundamental solution ϕ(x) and the exercise payoff

gi(x) implies that (Lϕgi)(x) > 0 on g−1
i (R+). Moreover, standard differentiation yields

(Lϕgi)′(x) = (Grgi)(x)ϕ(x)m′(x) T 0, x S x̃i.

Let z ∈ g−1
i (R+) ∩ (x̃i, b). Standard integration yields

(Lϕgi)(x) = (Lϕgi)(z)−
∫ z

x
(Grgi)(y)ϕ(y)m′(y)dy.

Choosing x < k < x̃i and applying the mean value theorem for integrals yields that

(Lϕgi)(x) = (Lϕgi)(k)−
∫ k

x
(Grgi)(y)ϕ(y)m′(y)dy = (Lϕgi)(k)−(Grgi)(ξ)

r

(
ϕ′(k)
S′(k)

− ϕ′(x)
S′(x)

)
,

where ξ ∈ (x, k). Since ϕ′(x)/S′(x) ↓ −∞ as x ↓ a when a is either exit or natural,

we find that (Lϕgi)(x) ↓ −∞ as x ↓ a. Combining this observation with the continuity

and monotonicity of (Lϕgi)(x) then proves that there is a unique threshold x̂i < x̃i such

that (Lϕgi)(x) S 0 when x S x̂i. Especially, the definition of (Lϕgi)(x) implies that

x̂i = argmin{gi(x)/ϕ(x)}.
Given the above observation, denote now the proposed value function as Ûi(x). It is

now clear from the analysis above that the proposed value function is almost everywhere

twice continuously differentiable, that Ûi(x) ≤ gi(x) for all x ∈ I, and that (GrÛi)(x) = 0

on (x̂i, b). However, since x̂i < x̃i we find that (GrÛi)(x) ≥ 0 on (a, x̂i) and, therefore, that

Ûi(x) constitutes a r-subharmonic minorant of gi(x). Since Ui(x) is the greatest of such

minorants, we find Ûi(x) ≤ Ui(x).

To prove the opposite inequality, we first observe that since b is nonattracting, we know

that Px[γy < ∞] = 1 for any x ∈ (y, b) where y > a (cf. Karlin and Taylor (1981), p. 226–

229). Combining this observation with the continuity of the underlying diffusion process

and the exercise payoff implies that the proposed value function can be expressed as

Ûi(x) = Ex

[
e−rγx̂i gi(Xγx̂i

)
]
,
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where γx̂i
= inf{t ≥ 0 : Xt ≤ x̂i}. Hence, Ûi(x) is attained by applying an admissible

stopping strategy and, therefore, we find that Ûi(x) ≥ Ui(x), which completes the proof of

the alleged result. Proving part (B) is entirely analogous.

The proof of Lemma 3.1 states a set of conditions under which the two associated

stopping problems are solvable in the non-strategic case. As is clear from the proof of

Lemma 3.1 the boundary behavior of the underlying diffusion plays an important role in

the proof of existence and uniqueness of an optimal stopping boundary. The conditions on

the admissible boundary behavior can be, however, relaxed by making extra assumptions on

the extreme points of the auxiliary functions gi(x)/ψ(x) and gi(x)/ϕ(x) (which are closely

related to Doob’s ψ-transform (ϕ-transform, respectively) of the underlying diffusion X; cf.

Borodin and Salminen (2002), pp. 33–34). Our main findings on this case is summarized

in the next Corollary extending the results of Lemma 3.1 to a broader class of admissible

diffusion processes.

Corollary 3.2. (A) Assume that b is a nonattracting boundary for Xt, that there is a

threshold x̂i such that (Lϕgi)(x) T 0 for x T x̂i, i = 1, 2, and that (Lϕgi)′(x) ≥ 0 on (a, x̂i).

Then the conclusions of part (A) of Lemma 3.1 are valid.

(B) Assume that a is a nonattracting boundary for Xt, that there is a threshold x∗i such that

(Lψgi)(x) T 0 for x S x∗i , and that (Lψgi)′(x) ≤ 0 on (x∗i , b). Then the conclusions of part

(B) of Lemma 3.1 are valid.

Proof. The alleged results are direct implications of Lemma 3.1.

Corollary 3.2 essentially demonstrates that if the existence and uniqueness of the ex-

treme points of the functions gi(x)/ψ(x) and gi(x)/ϕ(x) are given and a set of sufficient

monotonicity conditions for the functionals (Lϕgi)(x) and (Lψgi)(x) are satisfied, then the

conclusions of Lemma 3.1 can be extended for a more general boundary behavior of the un-

derlying diffusion. As we will later see in our analysis, this finding extends to the strategic

setting as well.

It is clear from the definition of the saddle point characterized by the stopping times

(6) and (7) that the value of the game constitutes the smallest r-superharmonic majorant
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of the payoff g1(x) on the set where V (x) ≤ g2(x) and the greatest r-subharmonic minorant

of the payoff g2(x) on the set where V (x) ≥ g1(x). On the other hand, the r-harmonicity

of the value function on the continuation region C = {x ∈ I : g1(x) < V (x) < g2(x)} where

exercising is suboptimal implies that if x ∈ (z, y) ⊂ C and a < z < y < b then

V (x) = Ex[e−r(λz∧λy)V (Xλz∧λy)] (12)

where λl = inf{t ≥ 0 : Xt = l} denotes the first hitting time of the underlying diffusion

to the state l ∈ I. As is well-known from the classical theory of diffusions (12) can be

re-expressed in terms of the minimal r-excessive mappings ψ(x) and ϕ(x) as

V (x) = V (z)
ϕ̂(x)
ϕ̂(z)

+ V (y)
ψ̂(x)

ψ̂(y)
, (13)

where

ψ̂z(x) = ψ(x)− ψ(z)
ϕ(z)

ϕ(x)

denotes the increasing and

ϕ̂y(x) = ϕ(x)− ϕ(y)
ψ(y)

ψ(x)

denotes the decreasing fundamental solutions (unique up to a multiplicative constant) of

the ordinary differential equation (Au)(x) = ru(x) defined on the domain of the operator of

the killed diffusion {Xt; t ∈ [0, λz ∧ λy)}. Naturally, ψ̂z(x) ↑ ψ(x) as z ↓ a and ϕ̂y(x) ↑ ϕ(x)

as y ↑ b. It is now clear in light of this representation that an interesting question is whether

there is a pair of constant boundaries at which this expression is extremal. Moreover, given

that such a pair exists it is naturally of interest to study whether the resulting stopping

strategy constitutes an equilibrium strategy of the game. We address this problem in the

next section.

4 The Saddle Point Solution

It is clear from the r-harmonicity of the value function on the continuation region and

representation (13) that in the general case two different cases may arise. Namely, the case

where the free boundary problem results into a stopping rule which can be characterized by
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a single threshold and the case where the saddle point strategy can be characterized by two

boundaries at which the underlying diffusion should be stopped. Since the buyers objective

is to maximize the exercise payoff, the determination of the upper boundary y characterizes

the best possible solution for the buyer in the case where the buyer has to settle for the

lower payoff. Similarly, since the objective of the seller is to minimize the exercise payoff

received by the buyer, the determination of the lower boundary z characterizes the best

possible solution for the seller in the case where the buyer obtains the higher payoff. Given

the characterization (13) consider now the mapping

Fz,y(x) = g2(z)
ϕ̂y(x)
ϕ̂y(z)

+ g1(y)
ψ̂z(x)

ψ̂z(y)
(14)

which coincides with the value V (x) whenever the identities V (z) = g2(z) and V (y) = g1(y)

are satisfied in (13). Given this auxiliary expression, it is now economically sensible to ask

whether this representation attains an extreme value as a function of the arbitrary pair of

boundaries z and y for any x ∈ (z, y). Our first set of results summarizing the principal

implications on this question are now presented in the following.

Lemma 4.1. The boundaries z∗, y∗ satisfy the conditions

g′2(z
∗)

S′(z∗)
ϕ̂y∗(z∗)−

ϕ̂′y∗(z
∗)

S′(z∗)
g2(z∗) = B

g1(y∗)
ψ(y∗)

(15)

g′1(y
∗)

S′(y∗)
ψ̂z∗(y∗)− ψ̂′z∗(y

∗)
S′(y∗)

g1(y∗) = −B
g2(z∗)
ϕ(z∗)

(16)

which can be re-expressed as

B−1

∫ y∗

z∗
(Grg2)(x)ψ(y∗)ϕ̂y∗(x)m′(x)dx = g2(y∗)− g1(y∗) (17)

B−1

∫ y∗

z∗
(Grg1)(x)ϕ(z∗)ψ̂z∗(x)m′(x)dx = g1(z∗)− g2(z∗). (18)

Moreover, if a pair z∗, y∗ satisfying the first order necessary conditions (15) and (16) ex-

ists, then the value Fz∗,y∗(x) satisfies the smooth-fit conditions F ′
z∗,y∗(z

∗) = g′2(z
∗) and

F ′
z∗,y∗(y

∗) = g′1(y
∗).

Proof. Since

∂

∂z
ψ̂z(x) = −BS′(z)

ϕ2(z)
ϕ(x) and

∂

∂z
ϕ̂y(x) =

BS′(y)
ψ2(y)

ψ(x)

10



we find by standard differentiation of the value Fz,y(x) with respect to the boundaries z

and y that if an extremal pair exists it has to satisfy the ordinary first order necessary

conditions

∂Fz,y

∂z
(x) =

ϕ̂y(x)S′(z)
ϕ̂2

y(z)

[
g′2(z)
S′(z)

ϕ̂y(z)− ϕ̂′y(z)
S′(z)

g2(z)−B
g1(y)
ψ(y)

]
= 0

∂Fz,y

∂y
(x) =

ψ̂z(x)S′(y)

ψ̂2
z(y)

[
g′1(y)
S′(y)

ψ̂z(y)− ψ̂′z(y)
S′(y)

g1(y) + B
g2(z)
ϕ(z)

]
= 0

from which (15) and (16) follow. The alternative representations (17) and (18) follow from

(15) and (16) by noticing that

d

dx

[
g′2(x)
S′(x)

ϕ̂y(x)− ϕ̂′y(x)
S′(x)

g2(x)
]

= (Grg2)(x)ϕ̂y(x)m′(x) (19)

d

dx

[
g′1(x)
S′(x)

ψ̂z(x)− ψ̂′z(x)
S′(x)

g1(x)

]
= (Grg1)(x)ψ̂z(x)m′(x). (20)

Finally, if a pair z∗, y∗ satisfying the first order necessary conditions (15) and (16) exists

then

lim
x↑y∗

F ′
z∗,y∗(x) = g1(y∗)

ψ̂′z∗(y
∗)

ψ̂z∗(y∗)
+ g2(z∗)

ϕ̂′y∗(y
∗)

ϕ̂y∗(z∗)
= g1(y∗)

ψ̂′z∗(y
∗)

ψ̂z∗(y∗)
− S′(y∗)

ψ̂z∗(y∗)
Bg2(z∗)
ϕ(z∗)

= g′1(y
∗)

and

lim
x↓z∗

F ′
z∗,y∗(x) = g2(z∗)

ϕ̂′y∗(z
∗)

ϕ̂y∗(z∗)
+ g1(y∗)

ψ̂′z∗(z
∗)

ψ̂z∗(y∗)
= g2(z∗)

ϕ̂′y∗(z
∗)

ϕ̂y∗(z∗)
+

S′(z∗)
ϕ̂y∗(z∗)

Bg1(y∗)
ψ(y∗)

= g′2(z
∗)

completing the proof of our Lemma.

Lemma 4.1 states the ordinary first order conditions which a pair of boundaries has to

satisfy in order to constitute an extreme point. As usually in optimal stopping theory, we

again find that since the exercise payoffs are differentiable at the optimal exercise thresholds

the standard smooth-fit condition is satisfied in the present case as well (cf. Salminen (1985),

Alvarez (2001)). Lemma 4.1 also presents an alternative formulation of the optimality

conditions in terms of an integral representation based on the minimal r-harmonic mappings

ψ̂z∗(x) and ϕ̂y∗(x) for the underlying diffusion killed at the boundaries z∗ and y∗ (i.e. the

killed diffusion {Xt; t ∈ [0, λz∗ ∧ λy∗)}). An interesting implication of the observations

of Lemma 4.1 expressing the value as well as the stopping boundaries directly in terms
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of the minimal r-harmonic mappings for the underlying diffusion {Xt; t ∈ [0, ζ)} is now

summarized in the following corollary.

Corollary 4.2. Assume that the exercise payoffs are differentiable at the optimal bound-

aries z∗ and y∗. Then the optimality conditions (15) and (16) can be re-expressed as

(Lϕg2)(z∗) = (Lϕg1)(y∗) and (Lψg2)(z∗) = (Lψg1)(y∗). Moreover, in that case Fz∗,y∗(x) =

c1ψ(x)+ c2ϕ(x), where c1 = B−1(Lϕg2)(z∗) = B−1(Lϕg1)(y∗) and c2 = −B−1(Lψg2)(z∗) =

−B−1(Lψg1)(y∗).

Proof. The value Fz∗,y∗(x) satisfies the ordinary differential equation (GrFz∗,y∗)(x) = 0 on

the continuation region (z∗, y∗) where the underlying diffusion is not stopped. Thus, it can

be expressed in terms of the fundamental solutions as Fz∗,y∗(x) = c1ψ(x) + c2ϕ(x), where

c1, c2 are unknown constants. Combining the value-matching with the smooth-fit condition

at the lower boundary z∗ yields the system of equations

Fz∗,y∗(z∗) = c1ψ(z∗) + c2ϕ(z∗) = g2(z∗) (21)

F ′
z∗,y∗(z

∗) = c1ψ
′(z∗) + c2ϕ

′(z∗) = g′2(z
∗) (22)

Solving the unknown constants c1 and c2 from (21) and (22) yields

c1 = B−1

[
g′2(z

∗)
S′(z∗)

ϕ(z∗)− ϕ′(z∗)
S′(z∗)

g2(z∗)
]

= B−1(Lϕg2)(z∗) (23)

and

c2 = B−1

[
ψ′(z∗)
S′(z∗)

g2(z∗)− g′2(z
∗)

S′(z∗)
ψ(z∗)

]
= −B−1(Lψg2)(z∗). (24)

Analogously, combining the value-matching with the smooth-fit condition at the upper

boundary and solving the resulting linear equation yields

c1 = B−1

[
g′1(y

∗)
S′(y∗)

ϕ(y∗)− ϕ′(y∗)
S′(y∗)

g1(y∗)
]

= B−1(Lϕg1)(y∗) (25)

and

c2 = B−1

[
ψ′(y∗)
S′(y∗)

g1(y∗)− g′1(y
∗)

S′(y∗)
ψ(y∗)

]
= −B−1(Lψg1)(y∗). (26)

Combining (23) with (25) and (24) with (26) then proves the alleged claim.
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Corollary 4.2 demonstrates how the first order optimality conditions and the resulting

value function can be expressed in terms of the functionals (Lψgi)(x) and (Lϕgi)(x) associ-

ated to the integral representation of r-excessive functions for the diffusion {Xt; t ∈ [0, ζ)}
(cf. Salminen (1985)).

Our analysis above does not characterize how strategic interaction affects the optimal

boundaries in comparison with the non-strategic case considered in the previous section. A

set of relatively general conditions under which strategic interaction unambiguously speeds

up exercise in comparison with the nonstrategic setting is now summarized in the following.

Theorem 4.3. Assume that there is a pair of thresholds x̃i, i = 1, 2 such that (Grgi)(x) T 0

for x S x̃i, i = 1, 2, and that a pair (z∗, y∗) ∈ I2 satisfying the optimality conditions (17)

and (18) exists. Then, the pair (z∗, y∗) ∈ I2 is unique and x̂2 < z∗ < x̃2 and x̃1 < y∗ < x∗1.

Moreover, the value of the game reads as

V (x) =





g1(x) x ∈ [y∗, b)

Fz∗,y∗(x) x ∈ (z∗, y∗)

g2(x) x ∈ (a, z∗]

(27)

Proof. Consider for any fixed y ∈ I the functional

L1(z) =
B

ψ(y)
(g2(y)− g1(y))−

∫ y

z
(Grg2)(x)ϕ̂y(x)m′(x)dx.

It is clear that L1(y) > 0 for any y ∈ I and that L1(z) is increasing on (a, x̃2) and decreasing

on (x̃2, b). Thus, if a root z∗y ∈ (a, y) satisfying the condition L1(z∗y) = 0 exists, it has to be

on the set (a, x̃2). Analogously, consider for any fixed z ∈ I the functional

L2(y) =
B

ϕ(z)
(g1(z)− g2(z))−

∫ y

z
(Grg1)(x)ψ̂z(x)m′(x)dx.

We observe that L2(z) < 0 for any z ∈ I, that L2(y) is decreasing on (a, x̃1), and that

L2(y) is increasing on (x̃1, b). Consequently, if a root y∗z ∈ (z, b) satisfying the condition

L2(y∗z) = 0 exists, it has to be on the set (x̃1, b). On the other hand, as was established in

Corollary 4.2, the optimality conditions can be expressed as (Lϕg2)(z∗) = (Lϕg1)(y∗) and

(Lψg2)(z∗) = (Lψg1)(y∗). In light of our observations on the functional (Lϕg1)(x) we find
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that

(Lϕg1)(y∗) = (Lϕg1)(y)−
∫ y

y∗
(Grg1)(t)ϕ(t)m′(t)dt > 0

for any x̃1 < y∗ < y < b since g1(x) in non-decreasing and (Grg1)(x) ≤ 0 on (x̃1, b). Hence,

we find that (Lϕg2)(z∗) = (Lϕg1)(y∗) > 0. This, in turn, implies that z∗ > x̂2 since

(Lϕg2)(x̂2) = 0. Establishing that y∗ < x∗1 is completely analogous.

We now establish that if a pair satisfying the first order conditions exists then it is

unique. By differentiating implicitly the functionals Eϕ(z, y) = (Lϕg2)(z)− (Lϕg1)(y) and

Eψ(z, y) = (Lψg2)(z)− (Lψg1)(y) we find that

dy

dz

∣∣∣
Eϕ(z,y)=0

=
(Grg2)(z)ϕ(z)m′(z)
(Grg1)(y)ϕ(y)m′(y)

< 0

dy

dz

∣∣∣
Eψ(z,y)=0

=
(Grg2)(z)ψ(z)m′(z)
(Grg1)(y)ψ(y)m′(y)

< 0

for all (z, y) ∈ (a, x̃2)× (x̃1, b). Since

dy

dz

∣∣∣
Eϕ(z,y)=0

=
(

ψ(y)ϕ(z)
ψ(z)ϕ(y)

)
dy

dz

∣∣∣
Eψ(z,y)=0

<
dy

dz

∣∣∣
Eψ(z,y)=0

we find that if an interception point (z∗, y∗) exists, it is unique.

It remains to prove that the value of the game reads as in (27). To accomplish this task,

we first assume that x ∈ (z∗, y∗) and define the functionals

∆1(x) = g2(z∗)
ϕ̂y∗(x)
ϕ̂y∗(z∗)

+ g1(y∗)
ψ̂z∗(x)

ψ̂z∗(y∗)
− g1(x)

∆2(x) = g2(z∗)
ϕ̂y∗(x)
ϕ̂y∗(z∗)

+ g1(y∗)
ψ̂z∗(x)

ψ̂z∗(y∗)
− g2(x)

which in light of our findings satisfy the conditions ∆1(y∗) = ∆′
1(y

∗) = 0 and ∆2(z∗) =

∆′
2(z

∗) = 0. Standard differentiation yields

d

dx

[
∆1(x)
ϕ̂y∗(x)

]
=

S′(x)
ϕ̂2

y∗(x)

[
Bg1(y∗)
ψ(y∗)

− g′2(x)
S′(x)

ϕ̂y∗(x) +
ϕ̂′y∗(x)
S′(x)

g2(x)
]

d

dx

[
∆2(x)

ψ̂z∗(x)

]
=

S′(x)

ψ̂2
z∗(x)

[
−Bg2(z∗)

ϕ(z∗)
− g′1(x)

S′(x)
ψ̂z∗(x) +

ψ̂′z∗(x)
S′(x)

g1(x)

]
.

Invoking the optimality conditions (15) and (16) and applying the observations (19) and
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(20) then implies that

d

dx

[
∆1(x)
ϕ̂y∗(x)

]
= − S′(x)

ϕ̂2
y∗(x)

∫ x

z∗
ϕ̂y∗(t)(Grg2)(t)m′(t)dt < 0

d

dx

[
∆2(x)

ψ̂z∗(x)

]
=

S′(x)

ψ̂2
z∗(x)

∫ y∗

x
ψ̂z∗(t)(Grg1)(t)m′(t)dt < 0

since x ∈ (z∗, y∗) and a < z∗ < x̃2 and x̃1 < y∗ < b. Thus, we observe that ∆1(x) ≥
∆1(y∗) = 0 and ∆2(x) ≤ ∆2(z∗) = 0 for all x ∈ (z∗, y∗). Consequently, g1(x) ≤ V (x) ≤
g2(x) for all x ∈ (z∗, y∗). Moreover, since z∗ < x̃2 and y∗ > x̃1 we observe that the proposed

value function is r-superharmonic on (z∗, b) where the value is strictly smaller than g2(x)

and r-subharmonic on the set (a, y∗) where the value is strictly larger than g1(x). Hence,

z∗, y∗ defines a saddle point strategy and V (x) constitutes the value of the game.

Theorem 4.3 demonstrates that if an extremal pair characterizing the saddle point so-

lution exists, then this pair is unique and strategic interaction accelerates exercise in com-

parison with non-strategic setting as is characterized by the inclusion (z∗, y∗) ⊂ (x̂2, x
∗
1).

This observation is of interest since it does not depend on the particular boundary behavior

of the underlying diffusion and is valid whenever a pair satisfying the ordinary first order

conditions exists. Unfortunately, the conditions of Theorem 4.3 are not sufficient for the

existence of a pair z∗, y∗ defining a saddle point strategy and, therefore, more analysis is

needed. A set of sufficient conditions under which the conclusions of our previous theorem

holds are now summarized in the following.

Theorem 4.4. Assume that the boundaries a and b are natural for the diffusion {Xt; t ≥ 0},
and that

(i) Grgi ∈ L1 and limx↓a(Lψgi)(x) = limx↑b(Lϕgi)(x) = 0 for i = 1, 2,

(ii) there is a pair of thresholds x̃i, i = 1, 2 such that (Grgi)(x) T 0 for x S x̃i, and

(iii) (Grg1)(x) > (Grg2)(x) for all x ∈ I\{yj}j∈I .

Then a unique pair (z∗, y∗) satisfying the first order conditions exists and the value of the

game reads as in (27).
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Proof. Assumption (i) implies that

(Lψgi)(x) =
∫ x

a
ψ(t)(Grgi)(t)m′(t)dt

and

(Lϕgi)(x) = −
∫ b

x
ϕ(t)(Grgi)(t)m′(t)dt.

Consequently, we observe that the first order conditions (Lϕg2)(z∗) = (Lϕg1)(y∗) and

(Lψg2)(z∗) = (Lψg1)(y∗) can be re-expressed as
∫ y

z
ψ(t)(Grg1)(t)m′(t)dt =

∫ z

a
ψ(t)[(Grg2)(t)− (Grg1)(t)]m′(t)dt < 0 (28)

∫ y

z
ϕ(t)(Grg2)(t)m′(t)dt =

∫ b

y
ϕ(t)[(Grg1)(t)− (Grg2)(t)]m′(t)dt > 0. (29)

Consider now the behavior of the functionals

K1(y) =
∫ y

z
ψ(t)(Grg1)(t)m′(t)dt

K2(z) =
∫ y

z
ϕ(t)(Grg2)(t)m′(t)dt.

It is clear that our assumptions imply that if z ∈ I and y ∈ (x̃1 ∨ z, b) is arbitrary then the

mean value theorem for integrals implies that

K1(y) = K1(x̃1∨z)+
∫ y

x̃1∨z
ψ(t)(Grg1)(t)m′(t)dt = K1(x̃1∨z)+

(Grg1)(ξ1)
r

(
ψ′(y)
S′(y)

− ψ′(x̃1 ∨ z)
S′(x̃1 ∨ z)

)

where ξ1 ∈ (x̃1 ∨ z, b). Since ψ′(y)/S′(y) ↑ ∞ as y ↑ b and (Grg1)(ξ1) < 0 we find that

K1(y) ↓ −∞ as y ↑ b. Hence, this observation demonstrates that equation (28) has for any

z ∈ I a unique root y∗z ∈ (z ∨ x̃1, b). Analogously, our assumptions imply that if y ∈ I is

given and z ∈ (a, x̃2∧ y) is arbitrary then the mean value theorem for integrals implies that

K2(z) = K2(x̃2∧y)+
∫ x̃2∧y

z
ϕ(t)(Grg2)(t)m′(t)dt = K2(x̃2∧y)+

(Grg2)(ξ2)
r

(
ϕ′(x̃2 ∧ y)
S′(x̃2 ∧ y)

− ϕ′(z)
S′(z)

)

where ξ2 ∈ (z, x̃2 ∧ y). Since ϕ′(z)/S′(z) ↓ −∞ as z ↓ a and (Grg2)(ξ2) > 0 we find

that K2(z) ↑ ∞ as z ↓ a and, therefore, that equation (29) has for any y ∈ I a unique

root z∗y ∈ (z, x̃2 ∧ y). On the other hand, conditions (ii) and (iii) imply that x̃1 > x̃2.

Consequently, we find that if a pair (z∗, y∗) satisfying the first order conditions (28) and (29)

exists, it is necessarily on the set (a, x̃2)× (x̃1, b). Thus, in light of our previous uniqueness
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proof it is sufficient to establish that the curves z∗y and y∗z intercept on (a, x̃2)× (x̃1, b). To

accomplish this task, we first observe from Lemma 3.1 that z∗b = x̂2 and y∗a = x∗1. Moreover,

the boundary properties of the mappings K1(y) and K2(z) guarantee that z∗x̃1
< x̃2 and

y∗x̃2
> x̃1. Hence, monotonicity implies that y∗z : (a, x̃2) 7→ (y∗x̃2

, x∗1), z∗y : (x̃1, b) 7→ (x̂2, z
∗
x̃1

),

y∗z∗b = y∗x̂2
< x∗1 = y∗a < b, and y∗z∗x̃1

> y∗x̃2
> x̃1 > x̃2 > z∗x̃1

. Consequently, we observe

that the mappings z∗y and y∗z have an interception point on (a, x̃2) × (x̃1, b) from which

the alleged existence and uniqueness of a solution follows. The rest of our conclusions now

follow directly from Theorem 4.3.

Theorem 4.4 states a set of conditions under which a unique pair (z∗, y∗) satisfying the

first order conditions exists and under which the value of the game can be expressed as in

(27). As is clear from the proof of our theorem, the boundary behavior of the underlying

process plays a key role in the proof of the existence of a saddle point equilibrium by

determining the behavior of the associated functionals at the boundaries of the state space.

Naturally, establishing the existence of a saddle point equilibrium in a more general setting

requires a stronger set of sufficient conditions.

Even though the findings of Theorem 4.4 and Theorem 4.3 are applicable within a

relatively large class of problems our assumptions on the roots (and, therefore, the sign)

of the functions (Grgi)(x) are not always satisfied in cases where the exercise payoffs have

option characteristics (for example, in the call option case where gi(x) = (x − ci)+, c1 >

c2 > 0). A set of results characterizing the saddle point solution for a class of problems of

this type are now summarized in the following.

Corollary 4.5. Assume that there exists a < x̄i < x̃i < b so that gi(x) = 0 on (0, x̄i),

(Grgi)(x) > 0 on (x̄i, x̃i), and (Grgi)(x) < 0 on (x̃i, b), i = 1, 2, and that x̄1 ≥ x̄2. Assume

also that the threshold

y∗x̄2
= argmax

y

{
g1(y)

ψ̂x̄2(y)

}

exists. If a pair (z∗, y∗) ∈ (x̄2, x̃2) × (x̃1, y
∗̄
x2

) satisfying the first order conditions (15) and

(16) exists, then the conclusions of Theorem 4.3 are satisfied and the value of the game

reads as in (27).
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Proof. The alleged result is a direct implication of Theorem 4.3 after noticing that y∗̄x2

constitutes the corner solution of (16).

Corollary 4.5 states a set of condition under which the conclusions of our Theorem 4.3

are satisfied within a more general setting as well. It is clear from Corollary 4.5 that y∗̄x2

constitutes the maximal solution for the upper boundary and, therefore, that there are

circumstances under which the first order conditions (15) and (16) do not necessarily admit

an interior solution. In that case, it is naturally of interest to investigate under which

conditions (on the parameters of the problem) the pair of equations

g′1(y
∗̄
x2

)
S′(y∗̄x2

)
ψ(y∗x̄2

)− ψ′(y∗̄x2
)

S′(y∗̄x2
)
g1(y∗x̄2

) = lim
z↓x̄2

g′2(z)
S′(z)

ψ(z) (30)

g′1(y
∗̄
x2

)
S′(y∗̄x2

)
ϕ(y∗x̄2

)− ϕ′(y∗̄x2
)

S′(y∗̄x2
)
g1(y∗x̄2

) = lim
z↓x̄2

g′2(z)
S′(z)

ϕ(z) (31)

has a solution. It is clear that if this solution exists, then it characterizes the extreme

circumstances under which the considered game has a saddle point equilibrium and a value

V (x) =





g1(x) x ≥ y∗̄x2

g1(y∗̄x2
) ψ̂x̄2 (x)

ψ̂x̄2 (y∗̄x2
)

x̄2 < x < y∗̄x2

0 x ≤ x̄2

which satisfies both the value matching V (y∗̄x2
) = g1(y∗̄x2

) and V (x̄2+) = 0 as well as the

smooth fit conditions V ′(y∗̄x2
) = g′1(y

∗̄
x2

) and V ′(x̄2+) = g′2(x̄2+) at the exercise boundaries.

An economically interesting implication of this observation is that if increased volatility

expands the continuation region by lowering the threshold z∗ and increasing the threshold

y∗ then the first order conditions (30) and (31) characterize the extremal combination of

boundaries for a given prevailing volatility level. Consequently, if volatility increases in that

case then the saddle point equilibrium is lost. Under such circumstances the game has a

value and a well-defined saddle point equilibrium only for sufficiently volatilities below this

critical level. We will illustrate this observation later in an explicitly parametrized example

based on geometric Brownian motion. Naturally, other parametric changes resulting into a

similar reaction lead to a similar situation where the saddle point equilibrium strategy is

abolished.
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5 Explicit Illustrations

5.1 Smooth Payoff Case

In order to illustrate our general findings in an explicitly solvable framework, we now con-

sider the stopping game characterized by the exercise payoff

Πx(τ, γ) = Ex

[
e−r(τ∧γ)

(
((Rrf)(Xτ )− c1) 1{τ≤γ} + ((Rrf)(Xγ)− c2) 1{τ>γ}

)]
(32)

where c1 > c2 > 0 are exogenously determined constants measuring the sunk costs associ-

ated to the timing decision, f ∈ L1 is a continuous and non-decreasing profit flow satisfying

the conditions limx↓a f(x) < rc2 < rc1 < limx→b f(x), and Xt evolves according to the

stochastic dynamics characterized by the stochastic differential equation (1). For simplic-

ity, we also assume that the boundaries of the state-space of the diffusion are natural and,

therefore, that the valuation has an infinite time horizon.

It is worth observing that since the buyer gets in the present example always the expected

cumulative present value (Rrf)(x), the only variable factor which depends on the precise

timing of the decision is the cost which the buyer incurs (and the seller receives) at exercise.

Thus, the considered game can be interpreted as the valuation of an investment opportunity

which guarantees the buyer a permanent flow of revenues from the exercise date up to an

arbitrarily distant future at a cost which is endogenously determined from the game.

It is clear that the exercise payoffs can be re-expressed as gi(x) = (Rrf)(x) − ci =

(Rrπi)(x), where πi(x) = f(x)−rci. Thus, applying (2) implies that in the present example

we have

(Lϕgi)(x) =
∫ b

x
ϕ(v)(f(v)− rci)m′(v)dv

(Lψgi)(x) = −
∫ x

a
ψ(v)(f(v)− rci)m′(v)dv.

Since (Grgi)(x) = rci − f(x), we observe that the conditions of our Lemma 3.1 are satisfied

and, therefore, that in the absence of strategic interaction there are two stopping boundaries

x̂2 and x∗1 satisfying the optimality conditions (Lϕg2)(x̂2) = 0 and (Lψg1)(x∗1) = 0. In that

case x̂2 constitutes the optimal boundary at which the expected present value of the payoff
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g2(x) is minimized and x∗1 constitutes the optimal boundary at which the expected present

value of the payoff g1(x) is maximized. Moreover, we also observe that if a pair z∗, y∗ of

optimal boundaries exist, it has to satisfy the optimality conditions (Lϕg2)(z∗) = (Lϕg1)(y∗)

and (Lψg2)(z∗) = (Lψg1)(y∗) which can be re-expressed as

∫ y∗

z∗
ϕ(t)(f(v)− rc2)m′(v)dv − (c1 − c2)

ϕ′(y∗)
S′(y∗)

= 0 (33)

∫ y∗

z∗
ψ(v)(f(v)− rc1)m′(v)dv + (c2 − c1)

ψ′(z∗)
S′(z∗)

= 0. (34)

Our main conclusions on this problem are now summarized in the following theorem.

Theorem 5.1. There is a unique pair z∗ and y∗ satisfying the optimality conditions (33)

and (34). The value of the game is continuously differentiable and reads as

V (x) =





(Rrπ1)(x) x ∈ [y∗, b)

(Rrπ2)(z∗)
ϕ̂y∗ (x)

ϕ̂y∗ (z∗)
+ (Rrπ1)(y∗)

ψ̂z∗ (x)

ψ̂z∗ (y∗)
x ∈ (z∗, y∗)

(Rrπ2)(x) x ∈ (a, z∗].

(35)

Moreover, f(x̂2) < f(z∗) < rc2 and rc1 < f(y∗) < f(x∗1).

Proof. We first establish the existence and uniqueness of the pair z∗ and y∗ satisfying the

optimality conditions (33) and (34). To this end, consider the mappings

P1(z, y) =
∫ y

z
ϕ(v)(f(v)− rc2)m′(v)dv − (c1 − c2)

ϕ′(y)
S′(y)

(36)

P2(z, y) =
∫ y

z
ψ(v)(f(v)− rc1)m′(v)dv + (c2 − c1)

ψ′(z)
S′(z)

. (37)

It is clear that P1(y, y) = −(c1− c2)ϕ′(y)/S′(y) > 0 for all y ∈ I and P1(z, y) > 0 whenever

(z, y) ⊂ {t ∈ I : f(t) ≥ rc2}. Thus, equation P1(z, y) = 0 can have a root only if

z < inf{t : f(t) ≥ rc2}. Let z < k < inf{t : f(t) = rc2}. Then the monotonicity of the

mapping f(t)− rc2 implies that

P1(z, y) = P1(k, y)+
∫ k

z
ϕ(v)(f(v)−rc2)m′(v)dv ≤ P1(k, y)+

f(k)− rc2

r

(
ϕ′(k)
S′(k)

− ϕ′(z)
S′(z)

)
.

Since ϕ′(z)/S′(z) ↓ −∞ as z ↓ a we find that limz↓a P1(z, y) = −∞ for all y ∈ I and,

therefore, that equation P1(z, y) = 0 has for any y ∈ I a root z∗y ∈ {t ∈ I : f(t) < rc2}.
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Moreover, standard implicit differentiation yields

z∗y
′ =

ϕ(y)(f(y)− rc1)m′(y)
ϕ(z∗y)(f(z∗y)− rc2)m′(z∗y)

T 0, f(y) S rc1 (38)

implying that z∗y attains its maximum value on the set where f(y) = rc1.

Consider now the mapping P2(z, y). It is clear that P2(z, z) = (c2 − c1)ψ′(z)/S′(z) < 0

for all z ∈ I and that P2(z, y) < 0 as long as (z, y) ⊂ {t ∈ I : f(t) ≤ rc1}. Thus, we

observe that equation P2(z, y) = 0 can have a root only if y > sup{t ∈ I : f(t) ≤ rc1}. Let

y > k > sup{t ∈ I : f(t) = rc1}. Again, the monotonicity of the mapping f(t)− rc1 implies

that

P2(z, y) = P2(z, k)+
∫ y

k
ψ(v)(f(v)−rc1)m′(v)dv ≥ P2(z, k)+

(f(k)− rc1)
r

(
ψ′(y)
S′(y)

− ψ′(k)
S′(k)

)
.

Since ψ′(y)/S′(y) ↑ ∞ as y ↑ b we find that limy↑b P2(z, y) = ∞ for all z ∈ I and, therefore,

that equation P2(z, y) = 0 has for any z ∈ I a root y∗z ∈ {t ∈ I : f(t) > rc1}. Standard

implicit differentiation now yields

y∗z
′ =

ψ(z)(f(z)− rc2)m′(z)
ψ(y∗z)(f(y∗z)− rc1)m′(y∗z)

T 0, f(z) T rc2 (39)

showing that y∗z attains its minimum on the set where f(z) = rc2.

Combining these observations clearly indicate that if an optimal pair z∗, y∗ satisfying

the optimality conditions (33) and (34) exist, we necessarily have that f(z∗) < rc2 and

f(y∗) > rc1. Moreover, the inequalities (38) and (39) imply that for (z, y) ∈ (a, f−1(rc2))×
(f−1(rc1), b) we have f−1(rc2) > z∗f−1(rc1) > z∗y > z∗b > a and b > y∗a > y∗z > y∗f−1(rc2) >

f−1(rc1). Combining these observations with the monotonicity and continuity of the solu-

tions z∗y and y∗z (by inequalities (38) and (39)) then imply that z∗y and y∗z have at least one

interception point on {(z, y) ∈ I2 : z ∈ (a, f−1(rc2)), y ∈ (f−1(rc1), b)}. Since

d

dz

[
ψ(z)
ϕ(z)

]
=

BS′(z)
ϕ2(z)

> 0

uniqueness follows from the observation

dy

dz

∣∣∣
P2(z,y)=0

=
[
ψ(z)ϕ(y)
ψ(y)ϕ(z)

]
dy

dz

∣∣∣
P1(z,y)=0

>
dy

dz

∣∣∣
P1(z,y)=0

for all (z, y) ∈ (a, f−1(rc2))× (f−1(rc1), b).
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Having established the existence and uniqueness of an optimal pair, we now prove that

the proposed value function is indeed the value of the game. We first observe that the

proposed value function is continuously differentiable on I, twice continuously differentiable

on I\({z∗} ∪ {y∗}), |V ′′(z∗±)| < ∞, and |V ′′(y∗±)| < ∞. Moreover, (GrV )(x) = 0 on

(z∗, y∗), (GrV )(x) = rc2−f(x) > 0 on (a, z∗) and (GrV )(x) = rc1−f(x) < 0 on (y∗, b). Thus,

the proposed value function is r-subharmonic on the set (a, y∗) where it strictly majorizes

(Rrπ1)(x) and r-superharmonic on the set (z∗, b) where it strictly minorizes (Rrπ2)(x). This

proves that the proposed value is indeed the value of the game.

The inequalities f(x̂2) < f(z∗) < rc2 and rc1 < f(y∗) < f(x∗1) are direct implications

of our analysis above, the monotonicity of f(t), and the identities (Lϕg2)(x̂2) = 0 and

(Lψg1)(x∗1) = 0.

In order to illustrate the findings of our Theorem 5.1 in an explicitly parametrized case

assume now that µ(x) = µx and σ(x) = σx, where µ, σ ∈ R+ are known constants and that

f(x) = xθ, where θ > 0 is an exogenously given constant. It is well-known that in this case

the fundamental solutions of the ordinary second order differential equation (Gru)(x) = 0

read as ψ(x) = xη and ϕ(x) = xν , where

η =
1
2
− µ

σ2
+

√(
1
2
− µ

σ2

)2

+
2r

σ2
> 0

and

ν =
1
2
− µ

σ2
−

√(
1
2
− µ

σ2

)2

+
2r

σ2
< 0

denote the the roots of the characteristic equation σ2a(a − 1) + 2µ = 2r. Moreover, if the

absence of speculative bubbles condition r > θµ+ 1
2σ2θ(θ−1) is satisfied then the expected

cumulative present value of the cash flow xθ exists and reads as

(Rrf)(x) =
xθ

r − δ(θ)
,

where δ(θ) = θµ + 1
2σ2θ(θ − 1) denotes the expected growth rate of the flow xθ.

Given the observations above, let us now investigate the optimal stopping game and

its value. Our assumption r > δ(θ) implies that η > θ since (η − θ)(θ − ν) = 2(r − θµ −
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1
2σ2θ(θ − 1))/σ2. Thus, the non-strategic exercise boundaries now read as

x̂2 =
(

ν(r − δ(θ))c2

ν − θ

)1/θ

=
((

1− θ

η

)
rc2

)1/θ

and

x∗1 =
(

η(r − δ(θ))c1

η − θ

)1/θ

=
((

1− θ

ν

)
rc1

)1/θ

.

Moreover, the optimality conditions defining the optimal boundaries z∗ and y∗ can be

expressed as

θ − ν

r − δ(θ)
z∗θ−η + νc2z

∗−η =
θ − ν

r − δ(θ)
y∗θ−η + νc1y

∗−η (40)

η − θ

r − δ(θ)
z∗θ−ν − ηc2z

∗−ν =
η − θ

r − δ(θ)
y∗θ−ν − ηc1y

∗−ν . (41)

Unfortunately, solving the optimal boundaries from these equations explicitly is extremely

difficult, if possible at all. Thus, we illustrate the optimal boundaries numerically in Table

1 (under the parameter specifications that c1 = 20, c2 = 10, r = 0.04, µ = 0.02, and θ = 1).

It is worth noticing that our numerical results show that increased volatility expands the

Table 1: The Optimal Exercise Boundaries

σ 0.1 0.2 0.3 0.4 0.5

z∗ 0.2137 0.1838 0.1603 0.1427 0.1294

y∗ 0.9699 1.3355 1.7872 2.3145 2.9208

x̂2 0.1649 0.1172 0.0827 0.0597 0.0443

x∗1 0.9702 1.3657 1.9346 2.6806 3.6114

continuation region by decreasing z∗ and increasing y∗. This result is of interest since it

indicates that the comparative static properties obtained in studies considering the valuation

of investment opportunities in the non-strategic case can be extended to the strategic case

as well at least in the present example. The value of the game is illustrated in Figure 1

(under the parameter specifications that c1 = 20, c2 = 10, r = 0.04, µ = 0.02, σ = 0.1, and

θ = 1).
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Figure 1: The Value Function and the Exercise Payoffs

For the sake of comparison, the value of the game in the case where the cash flow is

concave is illustrated in Figure 2 (under the parameter specifications that c1 = 20, c2 =

10, r = 0.04, µ = 0.02, σ = 0.1, and θ = 0.8).
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Figure 2: The Value Function and the Exercise Payoffs

5.2 Non-smooth Case

In order to illustrate a non-smooth case where a corner solution arises, assume now for

simplicity that µ(x) = µx and σ(x) = σx, where µ, σ ∈ R+ are known constants, that

r > µ, and that

gi(x) =
(

x

r − µ
− ci

)+

,
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where c1 > c2 > 0. Given this characterization, define the critical pair (σ∗, Y ∗) as the

solution of the equations

(1− ν)Y ∗1−η + ν(r − µ)c1Y
∗−η = ((r − µ)c2)1−η (42)

(η − 1)Y ∗1−ν − η(r − µ)c1Y
∗−ν = ((r − µ)c2)1−ν , (43)

where η > 1 and ν < 0 are defined as in the previous section. In light of the first order

optimality conditions (40) and (41) and the monotonicity of the root y∗z characterizing the

upper exercise threshold as a function of the lower boundary, it is clear that the equations

(42) and (43) characterize the critical pair for which the value function satisfies the smooth

fit conditions at the boundaries z∗ = (r − µ)c2 = g−1
2 (0) and Y ∗ = y∗(r−µ)c2

.

Given the above definition, we immediately observe that if σ ≤ σ∗, then the first order

optimality conditions (40) and (41) have an interior root (z∗, y∗) so that the resulting value

function

V (x) =





g1(x) x ≥ y∗

g2(z∗) xν−y∗ν−ηxη

z∗ν−y∗ν−ηz∗η + g1(y∗) xη−z∗η−νxν

y∗η−z∗η−νy∗ν z∗ < x < y∗

g2(x) x ≤ z∗

satisfies the smooth fit conditions at both z∗ and y∗. In that case the hitting times τ∗ =

inf{t ≥ 0 : Xt ≥ y∗} and γ∗ = inf{t ≥ 0 : Xt ≤ z∗} constitute a saddle point for the game.

If, however, σ > σ∗, then the smooth fit condition cannot be satisfied at (r−µ)c2 and, thus,

the game has no value. Naturally, in this case

V (x) =





g1(x) x ≥ y∗(r−µ)c2

g1(y∗(r−µ)c2
) xη−((r−µ)c2)η−νxν

y∗
(r−µ)c2

η−((r−µ)c2)η−νy∗
(r−µ)c2

ν (r − µ)c2 < x < y∗

0 x ≤ (r − µ)c2,

where

y∗(r−µ)c2
= argmax

{
g1(x)

xη − ((r − µ)c2)η−νxν

}
.

We illustrate the optimal boundaries for various volatilities in Table 2 under the assump-

tions that c1 = 20, c2 = 10, r = 0.035, and µ = 0.02 (which imply that (σ∗, Y ∗) ≈
(0.212984, 1.25077)). This finding is of interest since it shows that increased volatility can
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Table 2: The Optimal Exercise Boundaries

σ 0.05 0.1 0.15 0.2

z∗ 0.187 0.176 0.164 0.153

y∗ 0.742 0.854 1.01 1.2

x̂2 0.142 0.123 0.103 0.0854

x∗1 0.742 0.854 1.02 1.23

break up the existence of a saddle point equilibrium. Thus, within this modelling framework

higher volatility does not only alter the equilibrium, it may very well abolish it.

6 Conclusions

In this paper we investigated a class of solvable Dynkin games by relying on an approach

based on the classical theory of diffusions, stochastic calculus, and ordinary nonlinear pro-

gramming techniques. Instead of analyzing all admissible stopping strategies at once, we

restricted our interest to the strategies which can be characterized as the first exit time

from an open set with compact closure on the state-space of the underlying diffusion and

studied the value of these policies as functions of the arbitrary boundaries. We presented a

set of conditions under which the value of the game can be explicitly derived in terms of the

minimal r-harmonic mappings for the underlying diffusion and characterized the resulting

saddle point equilibrium by applying the ordinary first order necessary conditions for the

optimality of the arbitrary boundaries. Interestingly, our results indicated that there are

circumstances under which parametric changes like increased volatility may break up the

existence of a saddle point equilibrium.

There are several directions towards which our analysis could be naturally extended.

A first natural extension would be to relax the zero-sum game assumption and analyze

the Nash equilibrium for a class of time homogeneous nonzero-sum games. Given that in

that case the value of the game can be analyzed by relying on quasi-variational inequalities
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(cf. Bensoussan and Friedman (1974, 1977)), the approach introduced in Alvarez (2004a,b)

for solving functional recursions associated with quasi-variational inequalities could offer

a promising technique for studying these games within a one-dimensional setting based

on ordinary diffusions. A second interesting extension would be to analyze circumstances

under which a broader class of strategies arise (along the lines of the study Touzi and

Vieille (2002) where mixed strategies are analyzed). A third natural extension would be

to increase the dimensionality of the stopping problem and analyze how this affects the

equilibrium strategy. All these extensions are outside the scope of the present study and,

therefore, left for future research.
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